jueves, 25 de junio de 2009

Introduccion a los inyectores, como funcionan.

Diferencias entre la carburación y la inyección
En los motores de gasolina, la mezcla se prepara utilizando un carburador o un equipo de inyección. Hasta ahora, el carburador era el medio más usual de preparación de mezcla, medio mecánico.

Desde hace algunos años, sin embargo, aumentó la tendencia a preparar la mezcla por medio de la inyección de combustible en el colector de admisión. Esta tendencia se explica por las ventajas que supone la inyección de combustible en relación con las exigencias de potencia, consumo, comportamiento de marcha, así como de limitación de elementos contaminantes en los gases de escape. Las razones de estas ventajas residen en el hecho de que la inyección permite ( una dosificación muy precisa del combustible en función de los estados de marcha y de carga del motor; teniendo en cuenta así mismo el medio ambiente, controlando la dosificación de tal forma que el contenido de elementos nocivos en los gases de escape sea mínimo.

Además, asignando una electroválvula o inyector a cada cilindro se consigue una mejor distribución de la mezcla.

También permite la supresión del carburador; dar forma a los conductos de admisión, permitiendo corrientes aerodinámicamente favorables, mejorando el llenado de los cilindros, con lo cual, favorecemos el par motor y la potencia, además de solucionar los conocidos problemas de la carburación, como pueden ser la escarcha, la percolación, las inercias de la gasolina.

Ventajas de la inyección
Consumo reducido
Con la utilización de carburadores, en los colectores de admisión se producen mezclas desiguales de aire/gasolina para cada cilindro. La necesidad de formar una mezcla que alimente suficientemente incluso al cilindro más desfavorecido obliga, en general, a dosificar una cantidad de combustible demasiado elevada. La consecuencia de esto es un excesivo consumo de combustible y una carga desigual de los cilindros. Al asignar un inyector a cada cilindro, en el momento oportuno y en cualquier estado de carga se asegura la cantidad de combustible, exactamente dosificada.

Mayor potencia
La utilización de los sistemas de inyección permite optimizar la forma de los colectores de admisión con el consiguiente mejor llanado de los cilindros. El resultado se traduce en una mayor potencia especifica y un aumento del par motor.

Gases de escape menos contaminantes
La concentración de los elementos contaminantes en los gases de escape depende directamente de la proporción aire/gasolina. Para reducir la emisión de contaminantes es necesario preparar una mezcla de una determinada proporción. Los sistemas de inyección permiten ajustar en todo momento la cantidad necesaria de combustible respecto a la cantidad de aire que entra en el motor.

Arranque en frío y fase de calentamiento
Mediante la exacta dosificación del combustible en función de la temperatura del motor y del régimen de arranque, se consiguen tiempos de arranque más breves y una aceleración más rápida y segura desde el ralentí. En la fase de calentamiento se realizan los ajustes necesarios para una marcha redonda del motor y una buena admisión de gas sin tirones, ambas con un consumo mínimo de combustible, lo que se consigue mediante la adaptación exacta del caudal de éste.

Clasificación de los sistemas de inyección.
Se pueden clasificar en función de cuatro características distintas:

1.-Según el lugar donde inyectan.

2.-Según el número de inyectores.

3. Según el número de inyecciones.

4. Según las características de funcionamiento.

A continuación especificamos estos tipos:

Según el lugar donde inyectan:

INYECCION DIRECTA: El inyector introduce el combustible directamente en la cámara de combustión. Este sistema de alimentación es el mas novedoso y se esta empezando a utilizar ahora en los motores de inyección gasolina como el motor GDi de Mitsubishi o el motor IDE de Renault.

INYECCION INDIRECTA: El inyector introduce eI combustible en el colector de admisión, encima de la válvula dc admisión, que no tiene por qué estar necesariamente abierta. Es la mas usada actualmente.

Según el número de inyectores:

INYECCION MONOPUNTO: Hay solamente un inyector, que introduce el combustible en el colector de admisión, después de la mariposa de gases. Es la más usada en vehículos turismo de baja cilindrada que cumplen normas de antipolución.

INYECCION MULTIPUNTO: Hay un inyector por cilindro, pudiendo ser del tipo "inyección directa o indirecta". Es la que se usa en vehículos de media y alta cilindrada, con antipolución o sin ella.

Según el número de inyecciones:

INYECCION CONTINUA: Los inyectores introducen el combustible de forma continua en los colectores de admisión, previamente dosificada y a presión, la cual puede ser constante o variable.

INYECCION INTERMITENTE: Los inyectores introducen el combustible de forma intermitente, es decir; el inyector abre y cierra según recibe ordenes de la centralita de mando. La inyección intermitente se divide a su vez en tres tipos:

SECUENCIAL: El combustible es inyectado en el cilindro con la válvula de admisión abierta, es decir; los inyectores funcionan de uno en uno de forma sincronizada.

SEMISECUENCIAL: El combustible es inyectado en los cilindros de forma que los inyectores abren y cierran de dos en dos.

SIMULTANEA: El combustible es inyectado en los cilindros por todos los inyectores a la vez, es decir; abren y cierran todos los inyectores al mismo tiempo.

Según las características de funcionamiento:

INYECCIÓN MECANICA (K-jetronic)

INYECCIÓN ELECTROMECANICA (KE-jetronic)

INYECCIÓN ELECTRÓNICA (L-jetronic, LE-jetronic, motronic, Dijijet, Digifant, etc.)

Todas las inyecciones actualmente usadas en automoción pertenecen a uno de todos los tipos anteriores.

ver video para mas informacion:
http://www.youtube.com/watch?v=6-udN4cZ6HU

lunes, 8 de junio de 2009

¿Funcionamiento del TurboCompresor?

Una pequeña introducción a lo que normalmente en nuestro país muchas personas lo tienen pero no conocen su funcionamiento claramente!!!

Tiene la particularidad de aprovechar la fuerza con la que salen los gases de escape para impulsar una turbina colocada en la salida del colector de escape, dicha turbina se une mediante un eje a un compresor. El compresor esta colocado en la entrada del colector de admisión, con el movimiento giratorio que le transmite la turbina a través del eje común, el compresor eleva la presión del aire que entra a través del filtro y consigue que mejore la alimentación del motor. El turbo impulsado por los gases de escape alcanza velocidades por encima de las 100.000 rpm, por tanto, hay que tener muy en cuenta el sistema de engrase de los cojinetes donde apoya el eje común de los rodetes de la turbina y el compresor. También hay que saber que las temperaturas a las que se va ha estar sometido el turbo en su contacto con los gases de escape van a ser muy elevadas (alrededor de 750 ºC).



CICLOS DE FUNCIONAMIENTO DEL TURBO

Funcionamiento a ralentí y carga parcial inferior: En estas condiciones el rodete de la turbina de los gases de escape es impulsada por medio de la baja energía de los gases de escape, y el aire fresco aspirado por los cilindros no será precomprimido por la turbina del compresor, simple aspiración del motor.

Funcionamiento a carga parcial media: Cuando la presión en el colector de aspiración (entre el turbo y los cilindros) se acerca la atmosférica, se impulsa la rueda de la turbina a un régimen de revoluciones mas elevado y el aire fresco aspirado por el rodete del compresor es precomprimido y conducido hacia los cilindros bajo presión atmosférica o ligeramente superior, actuando ya el turbo en su función de sobrealimentación del motor.

Funcionamiento a carga parcial superior y plena carga: En esta fase continua aumentando la energía de los gases de escape sobre la turbina del turbo y se alcanzara el valor máximo de presión en el colector de admisión que debe ser limitada por un sistema de control (válvula de descarga). En esta fase el aire fresco aspirado por el rodete del compresor es comprimido a la máxima presión que no debe sobrepasar los 0,9 bar en los turbos normales y 1,2 en los turbos de geometría variable.


CONSTITUCION DE UN TURBOCOMPRESOR



Los elementos principales que forman un turbo son el eje común (3) que tiene en sus extremos los rodetes de la turbina (2) y el compresor (1) este conjunto gira sobre los cojinetes de apoyo, los cuales han de trabajar en condiciones extremas y que dependen necesariamente de un circuito de engrase que los lubrica
Por otra parte el turbo sufre una constante aceleración a medida que el motor sube de revoluciones y como no hay limite alguno en el giro de la turbina empujada por los gases de escape, la presión que alcanza el aire en el colector de admisión sometido a la acción del compresor puede ser tal que sea mas un inconveniente que una ventaja a la hora de sobrealimentar el motor. Por lo tanto se hace necesario el uso de un elemento que nos limite la presión en el colector de admisión. Este elemento se llama válvula de descarga o válvula waste gate (4).



REGULACION DE LA PRESION DEL TURBO

Para evitar el aumento excesivo de vueltas de la turbina y compresor como consecuencia de una mayor presión de los gases a medida que se aumenten las revoluciones del motor, se hace necesaria una válvula de seguridad (también llamada: válvula de descarga o válvula waste gate). Esta válvula está situada en derivación, y manda parte de los gases de escape directamente a la salida del escape sin pasar por la turbina.

La válvula de descarga o wastegate esta formada por una cápsula sensible a la presión compuesta por un muelle (3), una cámara de presión y un diafragma o membrana (2). El lado opuesto del diafragma esta permanentemente condicionado por la presión del colector de admisión al estar conectado al mismo por un tubo (1). Cuando la presión del colector de admisión supera el valor máximo de seguridad, desvía la membrana y comprime el muelle de la válvula despegandola de su asiento. Los gases de escape dejan de pasar entonces por la turbina del sobrealimentador (pasan por el bypass (9)) hasta que la presión de alimentación desciende y la válvula se cierra.




La presión máxima a la que puede trabajar el turbo la determina el fabricante y para ello ajusta el tarado del muelle de la válvula de descarga. Este tarado debe permanecer fijo a menos que se quiera intencionadamente manipular la presión de trabajo del turbo, como se ha hecho habitualmente. En el caso en que la válvula de descarga fallase, se origina un exceso de presión sobre la turbina que la hace coger cada vez mas revoluciones, lo que puede provocar que la lubricación sea insuficiente y se rompa la película de engrase entre el eje común y los cojinetes donde se apoya. Aumentando la temperatura de todo el conjunto y provocando que se fundan o gripen estos componentes.

Ejemplo practico de modificación de la presión de soplado del turbo
Como ejemplo citamos aquí el conocido turbo Garret T2 montado en el clásico: Renault 5 GT Turbo, que tanto ha dado que hablar, por lo fácil que era modificar la presión de soplado del turbo, para ello simplemente había que atornillar/desatornillar el vástago (2) del actuador de la wastegate (4). Cuanto más corto sea el vástago , más presión se necesita para abrir la wastegate, y por consiguiente hay más presión de turbo.

Para realizar esta operación primero se quitaba el clip (1) que mantiene el vástago (2) en el brazo de la válvula (5). Afloja la tuerca (3) manteniendo bien sujeta la zona roscada (6) para que no gire y dañe la membrana del interior de la wastegate, ahora ya se puede girar el vástago (usualmente tiene dado un punto para evitar que la gente cambie el ajuste, así que hay que taládrarlo antes de girarlo).
Tres vueltas en el sentido de las agujas del reloj deberían aumentar la presión en 0.2 bar (3 psi), pero es un asunto de ensayo y error. Cuando finalmente tengas la presión de soplado deseada aprieta la tuerca y pon el clip.



TEMPERATURA DE FUNCIONAMIENTO

Como se ve en la figura las temperaturas de funcionamiento en un turbo son muy diferentes, teniendo en cuenta que la parte de los componentes que están en contacto con los gases de escape pueden alcanzar temperaturas muy altas (650 ºC), mientras que los que esta en contacto con el aire de aspiración solo alcanzan 80 ºC.
Estas diferencias de temperatura concentrada en una misma pieza (eje común) determinan valores de dilatación diferentes, lo que comporta las dificultades a la hora del diseño de un turbo y la elección de los materiales que soporten estas condiciones de trabajo adversas.
El turbo se refrigera en parte además de por el aceite de engrase, por el aire de aspiración cediendo una determinada parte de su calor al aire que fuerza a pasar por el rodete del compresor. Este calentamiento del aire no resulta nada favorable para el motor, ya que no solo dilata el aire de admisión de forma que le resta densidad y con ello riqueza en oxigeno, sino que, además, un aire demasiado caliente en el interior del cilindro dificulta la refrigeración de la cámara de combustión durante el barrido al entrar el aire a una temperatura superior a la del propio refrigerante liquido.

Los motores de gasolina, en los cuales las temperaturas de los gases de escape son entre 200 y 300ºC más altas que en los motores diesel, suelen ir equipados con carcasas centrales refrigeradas por agua. Cuando el motor está en funcionamiento, la carcasa central se integra en el circuito de refrigeración del motor. Tras pararse el motor, el calor que queda se expulsa utilizando un pequeño circuito de refrigeración que funciona mediante una bomba eléctrica de agua controlada por un termostato.




INTERCOOLER

Para evitar el problema del aire calentado al pasar por el rodete compresor del turbo, se han tenido que incorporar sistemas de enfriamiento del aire a partir de intercambiadores de calor (intercooler). El intercooler es un radiador que es enfriado por el aire que incide sobre el coche en su marcha normal. Por lo tanto se trata de un intercambiador de calor aire/aire a diferencia del sistema de refrigeración del motor que se trataría de un intercambiador agua/aire.
Con el intercooler (se consigue refrigerar el aire aproximadamente un 40% desde 100°-105° hasta 60°- 65°). El resultado es una notable mejora de la potencia y del par motor gracias al aumento de la masa de aire (aproximadamente del 25% al 30%). Además se reduce el consumo y la contaminación.



EL ENGRASE DEL TURBO

Como el turbo esta sometido a altas temperaturas de funcionamiento, el engrase de los cojinetes deslizantes es muy comprometido, por someterse el aceite a altas temperaturas y desequilibrios dinámicos de los dos rodetes en caso de que se le peguen restos de aceites o carbonillas a las paletas curvas de los rodetes (alabes de los rodetes) que producirán vibraciones con distintas frecuencias que entrando en resonancia pueden romper la película de engrase lo que producirá microgripajes. Además el eje del turbo esta sometido en todo momento a altos contrastes de temperaturas en donde el calor del extremó caliente se transmite al lado mas frió lo que acentúa las exigencias de lubricación porque se puede carbonizar el aceite, debiendose utilizar aceites homologados por el API y la ACEA para cada país donde se utilice.

Se recomienda después de una utilización severa del motor con recorridos largos a altas velocidades, no parar inmediatamente el motor sino dejarlo arrancado al ralentí un mínimo de 30 seg. para garantizar una lubricación y refrigeración optima para cuando se vuelva arrancar de nuevo. El cojinete del lado de la turbina puede calentarse extremadamente si el motor se apaga inmediatemante despues de un uso intensivo del motor. Teniendo en cuenta que el aceite del motor arde a 221 ºC puede carbonizarse el turbo.



El engrase en los turbos de geometría variable es mas comprometido aun, por que ademas de los rodamientos tiene que lubricar el conjunto de varillas y palancas que son movidas por el depresor neumatico, al coger suciedades (barnices por deficiente calidad del aceite), hace que se agarroten las guías y compuertas y el turbo deja de trabajar correctamente, con perdida de potencia por parte del motor.


RECOMENDACIONES DE MANTENIMIENTO Y CUIDADO PARA LOS TURBOCOMPRESORES

El turbocompresor está diseñado para durar lo mismo que el motor. No precisa de mantenimiento especial; limitándose sus inspecciones a unas comprobaciones periódicas. Para garantizar que la vida útil del turbocompresor se corresponda con la del motor, deben cumplirse de forma estricta las siguientes instrucciones de mantenimiento del motor que proporciona el fabricante:

- Intervalos de cambio de aceite
- Mantenimiento del sistema de filtro de aceite
- Control de la presión de aceite
- Mantenimiento del sistema de filtro de aire

El 90% de todos los fallos que se producen en turbocompresores se debe a las siguientes causas:

- Penetración de cuerpos extraños en la turbina o en el compresor
- Suciedad en el aceite
- Suministro de aceite poco adecuado (presión de aceite/sistema de filtro)
- Altas temperaturas de gases de escape (deficiencias en el sistema de encendido/sistema de alimentación).

Estos fallos se pueden evitar con un mantenimiento frecuente. Cuando, por ejemplo, se efectúe el mantenimiento del sistema de filtro de aire se debe tener cuidado de que no se introduzcan fragmentos de material en el turbocompresor.


Fuente:
www.chihuasroad.com

viernes, 5 de junio de 2009

Tipos de Motores






Motor convencional del tipo Otto





El motor convencional del tipo Otto es de cuatro tiempos. La eficiencia de los motores Otto modernos se ve limitada por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración.



En general, la eficiencia de un motor de este tipo depende del grado de compresión. Esta proporción suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano. La eficiencia media de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.





Funcionamiento



1. Tiempo de admisión - El aire y el combustible vaporizado entran.



2. Tiempo de compresión - El vapor de combustible y el aire son comprimidos y encendidos.



3. Tiempo de combustión - El combustible se inflama y el pistón es empujado hacia abajo.



4. Tiempo de escape - Los gases de escape se conducen hacia afuera.







Motor Wankel





En la década de 1950, el ingeniero alemán Félix Wankel completó el desarrollo de un motor de combustión interna con un diseño revolucionario, actualmente conocido como Motor Wankel. Utiliza un rotor triangular-lobular dentro de una cámara ovalada, en lugar de un pistón y un cilindro.



La mezcla de combustible y aire es absorbida a través de un orificio de aspiración y queda atrapada entre una de las caras del rotor y la pared de la cámara. La rotación del rotor comprime la mezcla, que se enciende con una bujía. Los gases se expulsan a través de un orificio de expulsión con el movimiento del rotor. El ciclo tiene lugar una vez en cada una de las caras del rotor, produciendo tres fases de potencia en cada giro.



El motor de Wankel es compacto y ligero en comparación con los motores de pistones, por lo que ganó importancia durante la crisis del petróleo en las décadas de 1970 y 1980. Además, funciona casi sin vibraciones y su sencillez mecánica permite una fabricación barata. No requiere mucha refrigeración, y su centro de gravedad bajo aumenta la seguridad en la conducción. No obstante salvo algunos ejemplos prácticos como algunos vehículos Mazda, ha tenido problemas de durabilidad.